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LETTER TO THE EDITOR 

The Ising model in a random field; supersymmetric surface 
fluctuations and their implications in three dimensions 

H S Kogon and D J Wallace 
Physics Department, University of Edinburgh, Mayfield Road, Edinburgh, EH9 352, 
Scotland 

Received 5 October 1981 

Abstract. The effective energy for interfaces between the ferromagnetic phases of the king 
model in a random external field is obtained by exploiting the supersymmetry of the model. 
This effective energy in three dimensions has the same renormalisation properties as the 
one-dimensional pure king model, to all orders in Feynman graph perturbation theory. On 
the basis of this analogy we present predictions for the correlation functions of the random 
field model in three dimensions. 

The aim of this paper is to indicate the role of supersymmetry in controlling interface 
fluctuations in the Ising model in a random external field. Our main interest is to study 
how the existence of a phase transition depends on the spatial dimension of the system. 
The basic approach we adopt is to study whether for an arbitrarily weak random 
external field the model can sustain a local interface separating the two distinct 
ferromagnetic low-temperature phases. In this approach it is crucial to incorporate 
properly the statistical mechanics of the gapless capillary waves, whose origin can be 
traced to the breaking of rotation and translation symmetry by e.g. a planar interface 
(Wallace and Zia 1979, Lowe and Wallace 1980). For the Ising model in a random field 
we shall see that a ferromagnetic interface breaks not only these symmetries of a 
continuum model but also the supersymmetry of the model exposed by Parisi and 
Sourlas (1979). Consequently there are important gapless fluctuations in the random 
field problem which are in addition to the standard capillary waves of the interface in a 
pure system. We shall show how these effects combine to raise the lower critical 
dimension of the random model to 3. 

This problem has been studied in a recent Letter by Pytte et a1 (1981), hereafter 
referred to as I. Our picture for the phase diagram agrees qualitatively with that 
obtained in I by means of the replica method (Edwards and Anderson 1975). However, 
we are unable to understand the model for surface fluctuations proposed in I and in 
particular, calculations on the two, four and six point correlation functions show that the 
model used in I for calculation is not consistently renormalisable in a sense we shall 
expand upon below. It seems likely to us that terms omitted in calculations in I are 
relevant, despite contrary claims by the authors. 

Our starting point is the conventional Landau-Ginzburg-Wilson model for this 
problem-a one-component field 4 (x) in a random external field h (x): 
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For a quenched random field h, the prescription for calculating e.g. the free energy 
involves averaging the free energy for a given h ( x )  over all functions { h }  with a 
probability distribution whose simplest form is P{h}aexp [-4 1’ ddx h2(x)/A]. Clearly 
the parameter A, which will play an important role subsequently, measures the strength 
of the randomness by controlling the width of the distribution of h. 

The study of the model (1) by renormalisation group methods shows that non-trivial 
critical behaviour can be obtained as a power series in E in 6 - ~  dimensions (Imry and Ma 
1975, Lacour-Gayet and Toulouse 1974, Grinstein 1976, Aharony et a1 1976) and that 
the perturbation expansions for exponents are the same to all orders in E as the 
expansions for the pure Ising-type model in 4-E dimensions (Young 1977). An 
extremely elegant way to establish this perturbative equivalence was pointed out by 
Parisi and Sourlas (1979). They showed that the diagrams contributing to the cal- 
culated critical behaviour could be expressed in terms of conventional scalar fields 4 (x) ,  
w(x)  and anticommuting scalar fields $(x) ,  $(x). The interactions amongst these fields 
involve only the potential V ( 4 )  of (1) and can be written in a simple form if we collect 
the fields together into a superfield (Salam and Strathdee 1974,1975, Delbourgo 1975, 
Fayet and Ferrara 1977) by using anticommuting variables 8 and ti, defining 

WX, e, ti) = A - ” ~ ~ ( x )  + @ ( X I  + $(x)e + ~ # A ’ / ~ ~ ( X ) .  (2) 
The Hamiltonian replacing (1) then takes the form 

3Z’R = ddx dJdO[$3(-Vz@) + A-’ V(A1’2@)] I 
where 

v: = v2 + alas alae. 
This looks superficially like the pure model analogous to (1) except that (a) the 
coefficient g of the quartic coupling for example is replaced by gA and (b) the field now 
exists in a higher-dimensional space (x, 8, #). However, Parisi and Sourlas show that 
the anticommuting variables effectively reduce the spatial dimension d by 2, i.e. this 
most singular part of the random system in d dimensions is equivalent to the pure 
system in d-2 dimensions, at least to all orders in perturbation theory. 

We now turn to the problem of describing an interface between two low-tempera- 
ture ferromagnetic phases of (3). It is helpful to recall the arguments for the original 
pure model (Wallace 1980, Jasnow and Rudnick 1978, Ohta and Kawasaki 1977), 

X= I ddX [$4(-V2c$) + V(4)l. ( 5 )  

We assume that we are below a critical temperature on the coexistence curve, so that 
V(4)  has two minima 4* and V(4,) = V(q!-), at the classical level; it is straightforward 
to generalise this condition when fluctuation effects are incorporated. The classical 
description of the interface then involves the solution 4 J x )  of the field equation 
extremising 3Z’, 

v2c$ = a vla4, (6) 

obeying the boundary conditions &+ q5* as z + fa say. A solution C $ ~ ( Z )  depending 
only on the single coordinate z can be found; it gives the classical density profile for a 
flat interface whose normal is along the z axis. However, because the interface can be 
translated or rotated in this model at no energy cost, we know that in the fluctuations 
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there will be modes which are gapless in the long-wavelength limit-the capillary 
waves. For the pure system we know that surface tension controls the effective energy 
of such fluctuations. We can derive this result by noting that an accurate enough 
description of an interface displaced by a perpendicular distance f ( y )  from the surface 
z = 0 is given by 

The numerator in the argument translates the interface locally byf(y) depending on the 
(d - 1) component position y and the denominator describes the apparent local dilation 
of the profile of an interface making a direction cosine [1+ (Vf )2]- ' /2  with the z axis. An 
elementary change of variables then yields an effective energy for such a fluctuation 

J J 

when we neglect higher derivatives off  to obtain the long-wavelength limit. Here the 
coefficient of the area term is the mean-field approximation for the surface tension. 

By applying standard renormalisation group methods to the model (8), there 
emerges (Wallace and Zia 1979) a systematic description of critical behaviour in 
Ising-type models near the lower critical dimension, where the capillary waves destroy 
even the existence of a local interface (i.e. in 1 and 1 + E dimensions). A crucial feature 
of the consistency of these calculations is that renormalisation of all correlation 
functions of f is achieved by a renormalisation of the one available quantity, the 
prefactor in (8). 

Stimulated by the paper of Pytte et a1 (I), we wish to consider the analogous problem 
for the random model (1). On the basis of previous experience with classical solutions in 
n + 0 models (Houghton et a1 1978), we are wary about the reliability of the replica 
method for such a problem; indeed with the model for surface fluctuations stated in I we 
obtain inconsistent results when we attempt to renormalise the 2n point functions by 
renormalisation of the available couplings. We prefer therefore to start from the model 
(3) exhibiting explicitly the supersymmetry. Inspection of the field equations reveals 
that @ ( x ,  6, g) = A-'/24c(z) is an extremum of (3), where d C ( z )  is the standard interface 
solution of ( 6 ) .  In the supersymmetric model (3) this configuration breaks not only 
some of the rotations and translations but also the supersymmetry. A little reflection 
should convince the reader that a sensible generalisation of (7) for the superfield 
configuration corresponding to a displaced interface is 

This guess is sufficient to derive in a controlled fashion (Wallace 1980) the effective 
Hamiltonian? for the soft modes at fixed low temperature: 

t Technically, the symmetry group of the superspace model (3) is a contraction of OSp(d + 1,2)  with the 
O(d + 1) subgroup contracted to the Euclidean group of rotations and translations in d dimensions. The 
coordinates ( x ,  8, g) in (3) transform as the coset space of this group factored by OSp(d, 2). The nonlinear 
transformation of the field F(y ,  8, 8) in the interface model (10) is determined by the transformation of the 
surface z = F ( y ,  8, 8) in the superspace ( x ,  8, g). 
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where (cf (8)) b-’ = A-’ 5 d t  ( ~ L ( Z ) ) ’ .  A scaling ansatz for this coefficient in three 
dimensions would suggest 

d a A( T, - T)-”, U = 0.63, (11) 
where T, is the transition temperature in the absence of the external field. 

An attractive feature of this formalism is that the Parisi and Sourlas argument now 
implies that any results from (8) near one dimension may be carried over to results for 
(10) near three dimensions. In particular, the Hamiltonian (10) is renormalisable in 
three dimensions by a renormalisation of b alone, to all orders in perturbation theory. 
Corresponding to the T = 0 critical point of the l-d Ising model with a correlation 
length 6 a T’” exp(constant/ T ) ,  the model (10) has no ferromagnetic phase transitions 
for any finite b, the correlation length diverging in three dimensions as 

(KL”* exp(l/L)[l  + O ( ~ ) I .  (12) 
We have verified these results also by explicit calculation to two loops. In three 
dimensions our picture then is a phase diagram in the AT plane consisting of a line of 
critical points for A = 0, T < T,. 

Of course the limitations of these remarks should be apparent. We have calculated 
only the effect of the most singular diagrams, on the presumption that the others will 
remain corrections to scaling in d = 3. This study of the stability of a ferromagnetic 
interface says nothing about the possibility of ordering into e.g. a spin-glass phase 
(Morgenstern et a1 1981, De’Belll981) (although we believe that amodel analogous to 
(10) for almost spherical droplets will yield a good description of a ‘domain structure’ 
without a phase transition (Binder et a1 1981) for small A). In the absence of a theorem 
that all planar interface configurations for (10) are equivalent to c$,(z), we cannot even 
rule out with any rigour the stability of a totally different ferromagnetic interface 
configuration. We note that the results (10)-(12) are not in general linked with the 
Griffiths singularity (Griffiths 1969, Imry 1977) because of the totally different depen- 
dence on dimensionality. 

These qualifications notwithstanding, let us now make the bold extrapolation of 
lifting into three dimensions the scaling form of the correlation function of the 
one-dimensional Ising model: (4 (x)4 (0)) = exp[-(ixl/r)]. This suggests the cor- 
relation function (O(x, 8, @)@(O)) = exp[-(x’+413@)”’/6] for the random field model 
(3) in three dimensions. Now, neutron scattering experiments (Cowley eta1 1981) on a 
dilute Ising antiferromagnet in a uniform external field H measure the quenched 
two-point correlation function (Fishman and Aharony 1979) of the model (l), with the 
identification AKH’.  Extending the argument of Parisi and Sourlas (1979), the most 
singular part of this measured correlation function is obtained directly from the 
superfield correlation function and, after Fourier transform, takes the form 

G(q) = 87r(-‘[A((-’ + q2)-’+ ((-’ + q2)-’] .  (13) 
Several features of this expression are apparent in the neutron scattering data 

(Cowley et a1 1981.) on Co,Znl-,F2. We note particularly that as the applied field 
H + 0, AaH’ +- 0 also. The range in q values where the Ornstein-Zernike term 
(6-’+q2)-’ in (13) gives a significant contribution is q s (--’”, which according to (1 1) 
and (12) shrinks rapidly as H +  0. Moreover the first term in (13) then becomes more 
important, by a factor -A& + CO. Thus as H decreases it is possible to obtain crossover 
from an Ornstein-Zernike form to a more singular one, as required by the data. 
Further, the form (12) implies that E-’ is vanishingly small over a range of small H ;  
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indeed, if we take the form of 6 from the one-dimensional model it also has for 
intermediate H a quasi-linear dependence on H, in quantitative agreement with the 
data. With this measure of agreement, it seems that the clean description of the 
interface above is likely to provide a useful framework within which to understand the 
experimental results. 

We thank K De’Bell, A D Bruce, R A Cowley, P W Higgs, G Parisi, P Ward and A P 
Young for useful discussions. 
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